
UNCLASSIFIED

AD 407 148,,

DEFENSE DOCUMENTATION CENTER
FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA. VIRGINIA

UNCLASSIFIED



NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
vise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that miy in any way be related
thereto.



407 148

LL J

ct "

DDC

ajuN 4g83

T•S!A B

THERM ADVANCED RESEARCH

DIVISION OF

I T H A C A, N E W Y O R K



THE AERODYNAMIC LOADING
ON

STREAMLINED DUCTED BODIES

by

Gary R. Hough

TAR-TR 625 December 1962

Submitted to Air Programs, Office of
Naval Research in partial fulfillment of

Contract Nonr-2859(00)

Donald Earl Ordway&
Head, Aerophysics Section

Approved:

A. Ritter
Director, Therm Advanced Research



ACKNOWLEDGMENT

The author wishes to extend his sincere appreciation to

Dr. D. E. Ordway for his many helpful suggestions; to Messrs.

C. F. Lo and A. L. Kaskel for checking the equations and

numerical calculations; and to Mrs. Sally Jack of the Cornell

University Computing Center for programming and carrying out

the necessary computer operations.

Reproduction in whole or in part is permitted for any

purpose of the United States Government.

li



ABSTRACT

A simple method for the rapid determination of the

linearized surface pressure distribution on streamlined ducted

bodies in axisymmetric flow is developed using conventional

singularity distributions. The final form of the pressure

coefficient is expressed directly as a single matrix operation

on the duct sectional properties and tables of the necessary

matrix coefficients are given. Several numerical examples are

worked out and compared with the results of previous theoretical

and experimental investigations.
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PRINCIPAL NOMENCLATURE

an coefficients of source distribution expansion
related to An by Eqs. (2.6)

An coefficients of thickness distribution expansion

C duct chord

"cm duct sectional pitching moment coefficient

"c duct surface pressure coefficientp

"c r duct sectional radial force coefficient

"cv coefficients of Glauert series for y

"2 -D two-dimensional Glauert coefficients

C non-dimensional duct vortex distribution, y/U

f strength per unit length of bound duct sources

F pressure coefficient of two-dimensional airfoil
with thickness t and no camber

hp,q coefficients of Fourier series expansion for
1 2

I1 •(Q½(w) - Q•½(w)1

ip,q coefficients of Fourier series expansion for G 2

vi



p static pressure

Legendre function of second kind and plus

one-half order

Legendre function of second kind and minus
one-half order

r radial coordinate

R duct reference radius

regular part of I1

•2 regular part of 12

t duct thickness distribution

uf axial velocity induced by bound ring sources

l axial velocity induced by bound ring vortices

U free stream velocity

vf radial velocity induced by bound ring sources

v7Y radial velocity induced by bound ring vortices

x axial coordinate

'Y strength per unit length of bound duct vortices

vii



inclination of duct camber line relative
to x axis

e duct effective camber, 6e G - f

e t thickness-induced camber

e circumferential coordinate

X c/2R

axial variable

0 angular variable, x = - X cos

D velocity potential for isolated source ring

angular variable, X = - X cos

stream function for isolated vortex ring

argument of Legendre functions

2

2

(-) quantity nondimensionalized with respect to
R ; e.g., x Ex/R

(') differentiation of a function with respect

to its indicated argument

II ) infinite column matrix

[ ] infinite square matrix

viii



THE AERODYNAMIC LOADING
ON

STREAMLINED DUCTED BODIES

INTRODUCTION

During the past three years we have formulated1 and

studied 2 ' 3 a three-dimensional theory for the finite-bladed

shrouded propeller in the forward flight regime. The mathematical

model chosen to represent the system was based on the classical

concepts of vortex propeller theory and of lifting-surface theory

for ring wings of zero thickness in inviscid, incompressible flow.

The purpose of this report is to remove the limitation of zero

thickness as all shrouds have a finite thickness which may con-

tribute substantially to the determination of such quantities as

the shroud loading and propeller inflow. Since the effect of the

propeller may be simply superimposed within the framework of

linearized theory, it is sufficient for our purposes to limit our

attention directly to the problem of the annular airfoil.

The problem of finding the detailed velocity field associated

with and the forces acting on annular airfoils in incompressible

flow has been the subject of extensive investigation over the

past twenty-five years. Possibly the earliest treatment using

singularity distributions and classical thin-airfoil theory was

given by H. E. Dickmann 4 in 1940. Since that time, many contri-

butions5-12 have appeared, culminating in the studies 1 3 - 1 9

1
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of J. Weissinger, who was the first to give a comprehensive

treatment of the thickness problem. Nevertheless, in spite of

all the work which has been undertaken, a simple, accurate method

had not yet been developed for the rapid prediction of duct

surface pressure distributions for preliminary design studies.

In this report, such a method for the linearized pressure

distribution in the case of axisymmetric flow is developed. The

results obtained are presented in a form such that they may be

incorporated directly into our previous studies of the ducted

propeller or used "as is" in the treatment of ducted bodies.

The conventional mathematical model of ring vortices and

sources distributed on a reference cylinder is chosen to repre-

sent the duct and the approximations of thin-airfoil theory are

employed throughout. The source strength depends only upon the

rate of change of the airfoil profile thickness. In turn, this
distribution induces a radial wash which, together with that

induced by the vortex distribution, must be equal to the local

camber everywhere on the duct surface. With the thickness dis-

tribution given in a generalized form of the NACA four-and five-

digit airfoil series, the thickness-induced radial wash is

expressed in appropriate matrix form. The solution for the

unknown vortex strength follows immediately using the iteration

2technique of D. E. Ordway and M. D. Greenberg . Then the

linearized surface pressure distribution is reduced to a single

matrix operation on the duct sectional properties. The effect



of the duct chord-to-diameter ratio is explicitly obtained and

tables of all necessary matrix coefficients are given for four

typical values of this parameter. Incidentally, several defi-

nite integrals not appearing in common integral tables 2 0 ' 2 1

were evaluated during the course of this work and have been

collected in an appendix.

Briefly, the report is presented as follows. The first

Chapter gives the mathematical formulation of the problem, the

derivation of the induced velocity field, and the procedure for

finding the strengths of the source and vortex distributions.

Chapter Two details the reduction of the thickness-induced

radial wash to matrix form in terms of the known thickness dis-

tribution coefficients. In Chapter Three, the duct surface

coefficient is found in matrix form and simple expressions for

the sectional radial force and pitching moment coefficients are

furnished. Tabulated values of all the required matrix coeffi-

cients for four body chord-to-diameter ratios are presented.

Several numerical examples are worked out to illustrate the

computational technique and to compare with previous theoret-

ical and experimental results in Chapter Four.



CHAPTER ONE

BASIC FORMULATION

1.1 Mathematical Model

Consider an annular airfoil, or duct, at zero incidence in

a uniform, inviscid, incompressible stream U , see Fig. 1.1.

A cylindrical coordinate system (x,r,e) is chosen with the

origin fixed at the center of the duct, x = -c/2 corresponding

to the duct leading edge and x = +c/2 to the trailing edge.

The duct section is assumed known and is the same at every

azimuthal station. The local inclination of the camber line to

the x-axis is denoted by E(x) and the thickness distribution

by t(x) . Both e and t/c are assumed small.

Making the conventional approximations of linearized per-

turbations, the annular airfoil is replaced by a distribution of

ring sources and vortices on an appropriate reference cylinder

of radius R . Due to the axisymmetry of the flow field, the

source strength per unit length f does not vary with e

The same is true of the vortex strength per unit length 7

Since -y = y(x) , there are no trailing vortices from the duct.

The strength of these distributions will be determined

from the physical boundary condition that the flow be everywhere

tangent to the duct surface together with the Kutta-Joukowski

condition at the trailing edge. Consistent with our assumptions,

4'
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6

this reduces to the familiar thin-airfoil approximation

1 vf + v

where vf and V7 are the radial velocities induced on the

reference cylinder by the source and vortex distributions

respectively and y(c/2) = 0 . Throughout the report we adopt

the ccnvention that the prime (') denotes total differentiation

of a function with respect to its indicated argument and, in

the event a double sign precedes a quantity, the top sign is to

be used to give the value on the outer duct surface and the

bottom sign, the value on the inner surface.

1.2 Induced Velocity Field

To solve Eq. (1.1) the radial component of the velocities

induced by f and y are required. Subsequently, the axial

component will be needed for the pressure coefficient. There-

fore, we will derive general expressions for both before we

proceed.

The velocity potential 0 for an isolated source ring

of unit strength is generally expressed in terms of the complete

elliptic integral of the first kind. Alternatively, we may use

the relation22 between this function and the Legendre function

of second kind and minus one-half order 0-_(c) to obtain,
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27rR

O a 1 + Ai2 + (i-i)2 (1.2)
2i

where x/R , r/R , ... and AR ii the axial separation

of the field point and the singularity at , ax a - & .

The corresponding axial and radial velocities are gotten from

40/6x and 6/br respectively. Upon reduction of the latter

velocity by recursion relations 2 2 and chordwise integration of

both over f , we find for the resultant contribution uf to the

axial perturbation velocity,

X

Uf -1c f (&) A d& (1.3)

and vf to the radial perturbation velocity,

vf(•,ri3) =f'. f (E) io(• - h2(cD)) dt(i•

where X E c/2R and QO(co) is the Legendre function of second

kind and plus one-half order.

On the other hand, the velocity components for an isolated

vortex ring of unit strength may be found most easily from the

stream function 1 . In terms of QO(w) , we have 2 3 ,

-- .. 4"0,(M) (1.5)
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with a) as defined in Eq. (1.2). The corresponding axial and

radial velocities are gotten from (1/r) ýT/Ar and (-l/r) ý/Z•x

respectively. After reduction of the former velocity by recur-

sion relations22 and chordwise integration of both over 7 , we

get for the axial component

X
= 1 f y(~ (')- ½(co~)) dý (1.6)

and the radial component v..,

X
v( ) = -) fd& (1.7)

-x

To evaluate uf , vf , and v on the reference cylin-

der, or i= 1 , we follow the usual procedures of thin-airfoil

theory. This has been previously carried out in detail in terms

of the associated elliptic functions 1 0 and has been repeated

using the small argument expansion22 of 0; and Q_ý , yielding

uf(Rl) - f(g) AR 0½(w) dE (1.8)
-x

vf(i.l) , _ 1 f(i) + ( fX f() (-oZ;) - Q½(ai)) df (1.9)
-x

21

de (110
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-x

where

2

1.3 Determination of Source and Vortex Strengths

Formally, f and y are coupled by Eq. (1.1). However,

from Eqs. (1.9) and (1.11), only vf and not v7 is discontin-

uous across the reference cylinder. Thus we must have

f(x) = ut'(i) (1.13)

and the required source strength depends only upon the rate of

change of the duct thickness distribution as for the problem of
10the two-dimensional airfoil

Consequently, with f determined we may regard the contin-

uous part of vf as a thickness-induced camber et defined by

-X

and combined with e to form an effective camber ee

e = -(1.15)
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Then Eq. (1.1) can be rewritten as

x

=( -&f AR Q•))•Q•( d (1.16)-e

where

- _= U C ( i) ( 1.17 )

Eq. (1.16) constitutes an integral equation for the unknown

vortex distribution C . To solve, we shall use the iterative

procedure of Ordway and Greenberg. A new axial coordinate

is introduced such that

x = -X cos • (1.18)

where 0 < < 7r and C is expressed in a Glauert series,

C = cO Cot + c sin vO (1.19)
V=1

Such a series satisfies the Kutta-Joukowski condition at the

trailing edge and possesses the proper square-root singularity

at the leading edge in the cotangent term. The corresponding

2Glauert coefficients are then given in matrix form as

(c) = (rIj + [P] + [p] 2 + [p) 3 + ... )(c2-D) (1.20)

where
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Col
C1

(c c 2

(1.21)

and (c 2 -D] is a column matrix of the Glauert coefficients of

a two-dimensional airfoil having a camber equal to 6e , these

coefficients being given by,

iT

0

2-D E cos vO do v > i (1.22)CV 7 -- •e

rI. is the unit matrix and [P] is a square matrix whose

coefficients are functions only of X Each term of the operator

(rIi + [p] + [p]2 + corresponds to a step in the iteration

process which in the limit converges to the exact solution, cf.

Ref. 13. The leading forty-nine elements of [P] are given in

Ref. 2 for X = 1/4, 1/2, 3/4 and 1 which covers the range of

practical interest. For convenience, we have computed the

elements of ([Ij + [P] + [p]2 + ... ) for these X to an
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accuracy of + 1 x 10-4 . These are presented in Tables 1.1-

1.4. Since the elements diminish rapidly off the diagonal and

approach unity quickly on the diagonal, engineering accuracy

can be achieved in a few steps. Of course as the chord-to-

diameter ratio increases, the three-dimensional effect increases

and the speed of convergence decreases.

In summary, the source strength is found immediately from

the known thickness distribution, see Eq. (1.13), and so et *

From Et and E , the Glauert coefficients of the vortex dis-

tribution are then found from a single matrix operation on the

corresponding coefficients of Eqs. (1.22) for a two-dimensional

airfoil with camber e e
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CHAPTER TWO

REDUCTION OF EFFECTIVE CANBER

2.1 General Considerations

From Eqs. (1.22) we see that the determination of the

two-dimensional Glauert coefficients is equivalent to decom-

posing e into the Fourier cosine series
e

E 1 ".E0 -1 eev cog v0 (2.1)
0 v=

i. e.,

2-D) - ( (E - (t (2.2)

We will assume that (e) or the contribution of the geo-

metrical camber to (e e is known by evaluation of Eqs. (1.22)

with e e replaced by e , cf. Ref. 24, or by direct expression

of e in the form of Eq. (2.1), cf. Ref. 25. The contribution

(E t of the thickness-induced camber will now be determined.

To carry this out, t' and the second factor in the integrand

of Eq. (1.14), say I1 , are expressed in forms suitable for

integration. We find each of these is composed of a singular

as well as a regular part and the corresponding products are

integrated in turn.

17
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2.2 Form of Thickness Distribution and t'

We will assume that t is expanded about the leading

edge in a generalized form of the NACA four- and five-digit

airfoil series26

t 1 X (x +)n
A 0 c 2 + An ++ (2.3)

n=l

where A0 , A1 , A2 ... are known constants and finite in

number for the NACA four- and five-digit sections and may be

found by appropriate curve fitting for others. The leading

coefficient A0 is related to the airfoil leading-edge radius

k by

A 0 =%f 2n'/c (2.4)

This form of the thickness distribution has a square-root

behavior at the leading edge only, cf. Refs. 11 and 15 in which

the assumed distribution possesses inherently not only a square-

root behavior in t at the leading edge but also at the trail-

ing edge as well.

Differentiating Eq. (2.3) and rewriting in a power series

in R for convenience, we find

a • 0 + -
- a0  +, . anx (2.5)

n-l
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where the respeftive coefficients are related by

a 0 - [ Ao

a 1 21

a = A 3 + 1 A+ + A 14 + • A7 +

32L

~~A10 +A7 7 +

a5- J + IA+ A+.

• (2.6)

For N•CA four- and five-digit airfoils, these coefficients are

tabulated in Table 2.1. From Eq. (2.5) then, we see that t'

is composed of a square-root singularity at the leading edge and a

regular part.

3 3 2 4 + A 6 6
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2.3 Form of 11

Similarly, the second factor in et, or

Ii r (•(•) " ()} (2.7)

may be separated into two parts, a logarithmic singularity and

a regular term R I From the known behaviour22 of 0, and

Qj, near unit argument, we find

II(AX) = - In 2 + i(A:R) (2.8)

and both the singular and regular parts are symmetric about AR = 0

The regular part has been evaluated and is shown in Fig. 2.1.

Since GRI(Ai) = Rl(X cos q - X cos 0) is bounded, it is

convenient to expand it in a double Fourier cosine series in the

region 0<_ <7r and 0<q (< nr (E= -Xcosq,) as

a1 Z j • h (X) coso pcos qq (2.9)
p=O q=0

The coefficients hpq (X) are, from orthogonality,

"pfq
T7r

hpq = 4 fJ cos pO cos qp dV dO (2.10)
7r 0 0

for p,q # 0 ; hp, and h0,q are one-half and h 0 , 0 is
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one-quarter of these values. Since ®I is an even function

in Ax , if we interchange 0 and 9 in Eq. (2.10) we can

show

hp,q = hq,p (2.11)

In addition, replacing 0 by (w-0) and 9 by (7r-9) in

Eq. (2.10), we find

h 0 if (p+q) = odd integer (2.12)
p~q

For X = 1/4 , 1/2 , 3/4 and 1 we have computed hp,q for

p,q = 0, 1, 2 ... 7 from Eq. (2.10) using a relaxation proce-

dure developed by G. E. Bartholemew 27. This was carried out

until the difference between successive computations was less

than + 1 x 10-5 and the results are presented in Tables 2.2-

2.5.
A comparison of the exact value of •i as obtained from

Eqs. (2.7), (2.8) and tables of the Legendre functions28 with

the series value as given by Eq. (2.9) using the computed hp,q'S

is given in Table 2.6. We find agreement to within + 1 x 10-4

in all cases, the results becoming significantly better as X

decreases. This is due to the rapid decay of the hp,q with

increasing p and q at low values of X . As expected, the

use of more terms in the double Fourier series gives a higher
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degree of accuracy.

An independent check on the accuracy of the relaxation

technique was desired. Accordingly, by the change of vari-

ables y=x+ , R + = we found it possible to perform

analytically the integration on y and so reduce h top,q
the evaluation of a single integral. Unfortunately, except

for ho,0 , the complexity of the integrand precludes the

possibility of further numerical computation; h 0 , 0 becomes

2X :n o (l + 16,XT(2-)-21 anF (2.13)

This was evaluated for X = 1/2 and 1 and the results agree

to within one unit in the fifth decimal place with those

determined by the relaxation method.

With the expansion of both t' and 1 into a singular

and a regular part, we may proceed to the determination of

(C t). The integral form of et , Eq. (1.14), can be sepa-

rated into four components corresponding to the multiplication

of the singular-singular, singular-regular, regular-singular,

and regular-regular parts of t" and I1 respectively. We

will now consider the evaluation of each of these in turn and

the subsequent decomposition of (et) into the matrix form
[Qa}a .



30

2.4 Singular-Singular Contribution

The first contribution to et arises from the product of

the two singular terms. Upon integration by parts and trans-

formation to the Glauert angular variable 0 , we find

a -L I n A'2)df

f 87rL n~ d

. [2 . + in-T_- ln(l+cosO) - sin&O In 1+sin (2.14)"2 l-sini a0 (.

The quantity inside the brackets is finite for 0 < 0 < 7r as

can be verified by passing to the appropriate limits.

To obtain the contribution to (e t , Eq. (2.14) is sub-

stituted into Eqs. (1.22) and the necessary integrations

carried out using elementary integrals and

7r

f In(l+coso) dO = -7r In 2 (2.15)

0

co(-)n+l1

f n > 1 (2.16)

0

f ,nl+sinO
sin I n,-- = 27 (2.17)

0

and
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cos 2n sin 1+sino do =

0

2 1 1 3 5 . .. (2n-1)
2n+l 2 4 6 • • (2n) , n > 1 (2.18)

Eq. (2.15) is taken from Ref. 20. Derivations of Eqs. (2.16),

(2.17) and (2.18) may be found in the Appendix.

With these results, the contribution to (et) may be

written in the matrix form (Q ](a) where [Qo] is given

in Table 2.7.

2.5 Singular-Regular Contribution

In view of the form of the expansion of i in Eq. (2.9),

the contribution to et of the product of the singular part of

t' and the regular part of 1 reduces immediately to a Fourier

cosine series, or

CO W
f a. hp,q cos cos q p

- p=0 q=0

Icos p[ 2VO hp, (-)q+l / (4q2-i) a0  (2.19)
p=0 q=0

To carry this out, we have changed to the Glauert variable and

used the relationship sin ½p = 1 (l-cos 9) . Thus the contri-

bution to (e t may be written simply by comparison with Eq. (2.1).



32

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 S0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

01 0 0 0 0 Hr4 ,,•••

N



33

Similarly to the preceding contribution, this may be ex-

pressed as [QSR])a) with [QSRI given in Table 2.8.

2.6 Regular-Singular Contribution

The product of the regular part of t' and the singular

part of 1 combine to give

Xn -0

-)L n=1l S

00 n1 ý-2 fk Ldý+X, kn n-(_,)n I nT2 1 (2.20)

n=l 2 an

The integrals on the right-hand side have been evaluated

analytically2 9 , e. g.,

R Xn _R
_XdI 2 ~~ X4

-x x-i•

x 2

f L d RAn - 2 x-

(2.21)

The reduction of Eq. (2.20) to the matrix form [QRS ](a) is

quite lengthy. To illustrate we will consider only a typical case,
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say n = 1 . From the first of Eqs. (2.21) and Eq. (2.20),

this term becomes, after changing to the Glauert variable and

rearranging,

+ 1 251
)L [2 + ,- - (l-.cosO) An(l-coso) - (l+coso) Jn(l+cosO) a1

If we replace In(l-cosO) with In 2sin 2½ and In(l+coso)

with In 2cos 2½€ and expand the resulting forms by means of

formulas 603.2 and 603.4 of Ref. 20 we get

[ n- § cos 20 - .cos 40 1  cos 6 - ... a1

Again, the contribution of this term to (et% is found by com-

parison with Eq. (2.1). In a like manner, the contributions of

the other terms are obtained and so [QRs] , see Table 2.9.

2.7 Regular-Regular Contribution
The final contribution to (e t from the regular parts of

t' and I1 is determined in the same fashion as the singular-

regular term. Here, this requires the evaluation of integrals

whose integrand is of the form cos q9 . This is carried

out by changing to the Glauert variable and replacing cos n-1

by its alternate cosine series, cf. formulas 404, Ref. 20. The

resulting integrals follow in turn from
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f coB mg cos q9 sin 9 d9 = 2 2-l)q+M-lq2+(m 2_l) (2.22)
f [q2_-(m-i)2][ q-(m+l)2]

which is derived by expressing the integrand as a sum of sine

functions, and is valid for m , q ý 0

In Table 2.10 the corresponding matrix [QRR] is given.

2.8 Final Form of Effective Camber

With Tables 2.7-2.10 combined to give

IQ] lo[ss] + [OSR] + [ORS] + [ORR] (2.23)

we obtain

(Ct [Q1(a) (2.24)

The leading forty-nine elements of [Q] have been computed to

an accuracy of + 1 x 10-4 for X = 1/4 , 1/2 , 3/4 and 1

and these are presented in Tables 2.11-2.14. Tables 2.2-2.5

were used to compute the elements of [QSR I and [QRR]

In summary then, we have from Eq. (2.2)

(c2-D) = [,E - [Q](a) (2.25)

where the elements of (a) are related to the coefficients of



2 X 0 (h h ho, h. 0,6 0

0 3 ' - 5 1h,3  21 1 ,5  - 15h , 7  + "'') X

0 +-h.)-
2034,2A 15 4,4 35 26--h
0h33,1 5 h3,3 - 21" h3,5 - 75-h3,7+...)"

(- 4,0 + 3h4,2 15 4,4 35 T 4,6+ "")

( 3h5,1 5 5h,3 - 21- h5,5 - 1-5h5,7+..).

0 - + T_- h6,60-h6,0 + 3h6,2 +Ih6,4 6,6



h13 hi o,4 Ih 2 0
3h0,0 1 , 2 1-05 0,4 35 0,6 +

X 5 •,- •5 1 ,3 - 3h , 5 - 095 + 17 ) 13

h- ,o h , + -13- h h , ...I X2
3-. 2 ,0 - 15 2 ,2  105 2 ,4  + 315 2 ,6 + ** 0

x 0 h( 3 . - - h3 , 3 - 3h3,5 - h3 ,7 + X 3
1 1 13

h h 1 + 3'5 h• + -I- h..x2
3- 4 L,0 - 15 h4,2 +105 h4,4 31'"6

S. (L h 5  - •5 .3  - 3h5 5 - %. h5 7 + ""), 3
5 51 35 5___

b+ -L h ) h2c3 6,0 15 6,2 + 1C5 6,4 "'"

TABLE 2.10

MATRIX [QRRI 2_



ho,o+ h 0,2- o,4 - o, 6  +... 4 0

,1 7  ... o (+- h + 1 h h h(_~~ ET,•o 1,. 3 1,, 5 1,..7•

3,7 T...) o 1 VT 3,3 3-5 - 1 3.

(- h4,4, - 61 h4,6 + 4... 0

5,7 5 ... 1 + 91- 5,- 3 9h 5 ,5 - 5,7

b +h 61
5 6.o0 h6, 2 + h 6 , 4 ÷ T 3 6, 6 +
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the thickness distribution by Eqs. (2.6). Consequently, the

contribution of shroud thickness has been simplified to a

single matrix operation on these related coefficients.

-- ----



CHAPTER THREE

DUCT PRESSURE DISTRIBUTION,
SECTIONAL RADIAL FORCE AND PITCHING MOMENT

3.1 Linearized Value of c

The duct surface pressure coefficient cp is defined by

Cp, a (3.1)
½pu

where p is the local static pressure, p, the free stream

static pressure and p the fluid density. Consistent with our

assumption of small perturbations, we use the linearized form of

Bernoulli's equation, or

p - .- - PU (uf( 1l) + q(•,1)) (3.2)

With this result and Eqs. (1.8), (1.10), (1.13) and (1.17),

Eq. (3.1) reduces to

-x

- W f c() ) - d (3.3)
-)x

and the net duct loading, or the inner surface pressure coefficient

44'
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minus the outer surface pressure coefficient, is simply

cp] - -2 c() (3.4)

We see that cp is composed of a discontinuous part pro-

portional to the local vortex strength and a continuous part

composed of a term due directly to the duct thickness and a term

due to the vortex distribution, or equivalently, the effective

camber. Analogously to the thickness-induced camber, the con-

tributions to the continuous part may be reduced to a matrix

operation on the duct sectional properties. This is readily seen

for the second integral if we compare the integrands of vf(xl)

and u(xl) , Eqs. (1.9) and (1.10), and note the form of c(x)

Eq. (1.19). For the first integral, however, it is necessary to

put the second factor in the integrand, say 12 , in a suitable

form.

3.2 Form of 12

We now consider 12 I or

2-~ Q: ) (3.5)

Physically, I2 is equal to the axial velocity induced on the

reference cylinder by a ring source of unit strength having the



same radius. From the known logarithmic behaviour of Q_h

near unit argument, we find that 12 may be separated into two

partar a Cauchy singular tom and a regular term OL 2 8 or

.2 (__ - 2 ( +) (3.6)

Both the regular and singular parts are antisymnetric about

A - 0 . The regular part has been computed and is shown in

Fig. 3.1. It has been checked against the corresponding function

UE (Uxq - - 27r 2) previously tabulated by Weissinger 1 5 .

As in the case of Ri 1 we expand (R2 in a double Fourier

cosine series in the region 0 <_ 0 Kw and 0 7r•w as

" Z X• Jp,qoL) cOs p0 cos qy (3.7)
p-0 q-0

where the coefficients Jp,q are given by Eq. (2.10) with •.

replaced by I,2 and hp~q by Jp,q . Since is2 i an odd

function in Ai , we can show by interchanging 0 and ip that

lp,q- - jq,p (3.8)

As a result, J,0 jll , ... all identically vanish.

Also, by replacing 0 by (w4) and qi by (w-q) , we find

-pq M 0 if (p+q) - even integer (3.9)
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Using the relaxation procedure mentioned earlier, we have

computed jp,q for p,q - 0 , 1 , 2 , ... 7 for X - 1/4

1/2 , 3/4 and 1 until the difference between successive compu-

tations was less than + 1 x 10-5 and the results are presented

in Tables 3.1-3.4. Table 3.5 gives a comparison between the

exact value of R 2 and the series value obtained using the com-

puted Jp,q . Agreement is to within + 5 x 10-4 , with the

series value for the smaller X's again being significantly

better.

With the expansion of 12 into a singular and a regular

part, the direct-thickness contribution to cp can be simplified

to matrix form.

3.3 Reduction of Direct-Thickness Contribution

Since each of the two factors in the integrand of the direct-

thickness contribution is composed of a singular and a regular

part, the contribution of this term to cp could be reduced to

matrix form in exactly the same fashion as was the thickness-

induced camber. That is, we would consider the product of the

singular-singular, singular-regular, regular-singular and regular-

regular parts and evaluate each in turn. However, it is more

convenient to break up the integration in the following manner.

First consider the product of t' and the Cauchy singular

part of 12 , or
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v(s) J d( (3.10)

This is identified as the thin-airfoil theory formula for the

linearized pressure coefficient of a two-dimensional airfoil

section with thickness t and no camber, see for example Ref. 30.

For NACA sections, values of the local surface velocities have

been tabulated in Appendix I of Ref. 36 and it is better to use

these more exact values multiplied by (-2) rather than to

evaluate the integral of Eq. (3.10).

Since &2 has been expanded in the same form as 1' the

remainder of the integral, or the product of t" and R 2 , follows

as in Sections 2.5 and 2.7 using Jp,q instead of hpq or

2 7'(() . 2 (Ai) df- - (•)T[T](a) (3.11)
-x.

where the minus sign is for convenience later and

1

Cos

(0) IS -coos20

(3.12)

T denotes the transposed matrix, and [T] is a square matrix whose

elements are functions only of X and are given in Table 3.6.

| .. ..



2X i 0 1 + JO3 +99 Jo,5 1 O,7 + 0o 3o

+ (1

- 1J2,1 - 4J2, 3 - "J2, 5  1 J2, 7 + 0") ) (s J2,1 - J2

1 1 1 1 F2 1
31 J4,1 - 35 J4, 3 - 9 J4, 5 - L5- Ji4, 7 + )0 (3" J4,1 - 5" J

("J5,0 + L j 5,2 + 1 +5, 1....

1 9
1 1 F2

J6, J,3 9-9J65 7 6,7+ 04 J.1 51J6



1 1 1 1,4 + 1J1,6 + 0

0- J3,C - J1,2 + 1 34"'
- 1 1 1 ) (+ J2.1 5 J2,3 - b J2,5(1 j2,1 - 15J2,3 - " J2,5 - 3' J2,? + "'"

3 3o0 1 j3.2 + % J3.4 ÷•'5 J3,6 + ""

(13 J4,1 - 15 J643 J4,5 - 4 141 - - J4,3 -

131 + -I-' A56 +3.2
o ~~-5,0 T-52 1.0515,14 ~

(~~ ~ J6.7 + )'k3- T~5 0 (4 J6,1 J 3 6,3 J 6.5

TABLE 3.6

MATRIX [T]



jo,3 + • 10,5+ • •O,7÷ .-- 0 (-+ •o. jol- •o,3÷ + •To,5÷ +

0(_ *ji,0- * jl,2 + jl4 j, + 0.)X3 .

J2 3 - • •.,5- • •2,7+ 0" c+ •2,i + • .,3- 693 •,5- 1.•
JO,3 + JO,5 + 95il,7 + )L3c10 0L, 3 + J 0J, 5 +

01 0 - J61, 2+ 3 J •1,4 + AJ1 6 (.6+ )'L1

j2,3- i J2.,5 J2,7 + ,X3 0...,1 , + J2,3 - X ,J.5 - 1o 1- j • -* J3,2÷ + ,+ 61 +. 0.-

.0, -5 , - J 5 ,2 + *.• J 5.. 1 1 5 5 J 5 .+, + • . , • -
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The leading forty-nine elements of [T] are given in Tables

3.7-3.10 to an acurac of + x0-4 for -1/4 , 12 , 3/4

and 1

3.4 Reduction of Effective-Cuber Contribution

As noted in Section 3.1, the integrand of the effective-

camber contribution is already in a form suitable for integration.

The reductibn is carried out by decomposing the integrand into four

parts corresponding to the singular-singular, singular-regular,

regular-singular and regular-regular contributions of C and I

Each of these is evaluated in turn as in Sections 2.4-2.7 with the

aid of the relationships sin nq. sin 9 - ½(cos(n-l)q - coo(n+l)9)

and cot I - (l+cos q )/sin 4p and the following definite integrals

which are derived in the Appendix,

f £n(cosq - coso) 2 dp -- w In 4 (313)
0

rcos np Jn(cosq - cos€) 2 dqp - - 2!cos n. n> (3.14)fn

0

and

f"sin vqcoo qq sin 9 dip m v m 1 & q 0

0

.+_r., v.-qV] & q• (3.15)
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Finally, the four contributions are added together to give the

matrix form of the effective-caier contribution, or

i. f c(Q~) - re()) dl - (,07( 8](c) (3.16)

where [S] is given in Table 3.11. The leading forty-nine

elements of [S] have been computed to an accuracy of + 1 x 10

and are given in Tables 3.12-3.15 fot X - I/# , 1/2 , 3/4 and I

3.5 Final Form of cP

The final form of the duct surface pressure coefficient is

now obtained by substituting zqs. (3.5), (3.6), (3.10), (3.11),

and (3.16) into uq. (3.3) to get

C.1 + C(i) + r(r) - (])T([T](a) + [8](c)) (3.17)

Thus we have succeeded in reducing the calculation of the

aerodynamic loading on an annular airfoil to a simple matrix

operation on (a) and (c) or equivalently, on the duct sec-

tional properties A , A1 , I ... and Co , 1 , 4 2 ... since

they are related to (a] and (c) through Eqs. (2.6), (1.20)

and (2.25). The matrix method of computing c. is ideally sutted

for engineering calculations and preliminary design studies since

it is both slmple and rapid and the effects of varying any or all

a ___ ____ _____ ___-
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-2 b 3 (+1 (-033b +1 0il d- 1 1 ,h1 3 -~ 1,3

4b2h+1 0b0
2,0 ~ ( 2, 0 + b2 ,2  4-02,2 b,

2 0b + b +
- 3 ,1  0, 3 0 h h 3 ,3 +b .

4 h,o 2- ,o + 42) (- h4+ 2 + 4 ) 0 )

-2 h5.1. (- h 5 , 1 + h5 ,3) (-h5,3 + h,

- b 0 (- 2 h 6 , 0 + h6 . 2 ) 0 ( h 6 2 + b6,4) 0

TABLE 3.11

MATRIX (S]
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0 (ho,02 - ho, 4) 0 (ho,.4 - 1O,06) 0

(-h + 1) 1,5) 1,5 1,7)

1. h11  h 0 b~13+15 0 - 1

( - 2,2 + h2 ,1 -4") (- h2,4 + h12,6)

h- + hh 3 + 1 0 + b13,5 - + (-b .* .

0, , ,3 3 F 3,5 3,7)

0 b- 110+11,
0 -h 4 ,2 +114,4 + 0,4+'4

h- 1,+1 1
, .+ (- , h5,3 +b 5,5 + 0) 0(-.11, + h, 7 -

(-_h6,2 116,4) 0 (- h6,4 + h6,6 + W)

TABLE 3.11

MATRIX [S]
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of the parameters t , e , and X may be easily determined. An

estimate of the error in any calculation may be made from a

"reasonable guess" at the magnitude of the elements which have

been neglected in the tabulated matrices. Generally, the error

will increase as X increases.

3.6 Sectional Radial Force and Pitching Moment

For an annular airfoil at zero incidence in a perfect fluid

the net forces and moments acting on the airfoil vanish. How-

ever, if we consider a section of the duct, then we find that

both a radial force, or lift, and a pitching moment are present.

The form of the corresponding force and moment coefficients, cr

and cm respectively, are the saie as for a two-dimensional

I ai irfoil, or

cr M " (c0 + hl) (3.18)

and

cm - (cl - c 2 ) (3.19)

where the radial force is positive outwards and the pitching

ownt is taken about the qumrter chord, positive nose-down.

-!- - -. - - ~ ~ -______________________________



CHAPTER FOUR

NUMERICAL EXAMPLZS

4.i Illustrative Calculation

In order to illustrate the procedure for computing the

duct pressure distribution we will work out an example in detail.

We take an NACA 0008 airfoil with

G - - tan 5*

X = 1/2 (4.1)

First, we determine (e) . It follows immediately by writing a

in the form of Eq. (2.1) and is

-0.1750

SI(4.2)

Next, for the MACA 0008 airfoil 5(tmx/c) o 0.4, , and from

Table 2.1 we find for X - 1/2 ,

68



69

o.1288
-0.2521
-0.1238

(a) - 0.1951
-0.3248

0

(4.3)

To obtain (et) we multiply (a) by the appropriate matrix

[Q0 from Table 2.12 to get

t 0.0005
-0.0356
-o.o116

(ct} - .o0009
-0.0005
0.0002

-0.0002 (4.4)

for the first seven elements.

The two-dimensional Glauert coefficients, or (a] -(4t) are

-0.1755
0.0356
m.116

(c2D] - -0.0009

0.0005

-0.0002
0.0002 (4.5)
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and u0 the Glauert coefficients of C are obtained from

3q. (1.20) and Table 1.2 as

-0.1890
o.oo88
0.0070

(c) - -0.0009
0.0005

-0.0002
0.0002 

(1.6)

Note that the three-dimensional effect of the duct changes only

the first three two-dimensional Glauert coefficients.

With the required Glauert coefficients determined, the

expression for the surface pressure coefficient, Eq. (3.17), may

be simplified. The first term, + C , is found from Eqs. (1.19)

and (4.6). The contribution of F is obtained from the basic

thickness form data in Appendix 1 of Ref. 26. The matrix opera-

tions [T](a) and [S][c) are carried out using Tables 3.8 and

3.13 and Zqs. (4.3) and (4.6), yielding

-0.-2195
0.0945
0.0036

(T](a) + [s](o) = 0.0007
0.0000
0.0000

0.0000 (4.7)
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With this information and (} from Eq. (3.12), c has been

p
calculated and is plotted in Fig. 4.1. For comparison purposes,
the effect of doubling X while keeping t and e the same

has also been computed and is shown in the same figure.

The effect on cp of varying t is given in Fig. 4.2 for

£ - - tan 50 and X - 1/2 . Comparison of the results with the

previous figure reveals that, for the particular configuration

investigated, doubling the chord-to-diameter ratio has a much

smaller effect on c. than a nearly corresponding increase in

the thickness ratio.

4.2 Comparison With Previous Results

To assess the accuracy of this new method, we have calcu-

lated the velocity and pressure distributions on several annular

airfoils to compare with the experimental and theoretical results

of previous investigators. The only wind tunnel measurements of

pressure, or velocity, distributions published to date which we

have found are those of the Bureau Technique Zborowsk 1 1 . In

their tests, the circumferential variation of the inner and outer

surface pressures on an NACA 66-006, X - 1 ring airfoil was

measured at several angles of attack. Their data which is appro-

priate to the present study, i. e., the zero angle of attack

results, has been replotted to within 1 0.005 in Fig. 4.3 and

comqared with the distribution as calculated from Sq. (3.17).
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Except in the immediate vicinity of the leading and trailing

edges, the results differ by less than 10%. Better agreement

is obtained for the inner surface distribution.

The pressure distribution on a conical ring airfoil of zero

thickness as computed from the rheoelectric tank analogy results

of Malavard 12 is compared with that of the present theory in

Fig. 4.4. Since X = 2/3 for this configuration, we have used

values of the necessary matrices which were estimated by linear

interpolation of the results for X = 1/2 and X = 3/4 . Satis-

factory accuracy can be achieved in this manner. In this example,

good agreement is obtained for the outer surface distribution only.

The discrepancy between the inner surface results has not been

resolved.

Bagley, Kirby and Marcer10 have developed a method for finding

the velocity distribution over annular airfoils in incompressible

flow. The basis of their work is the approximation of certain

31
integrals by Weber "sum-functions" of the airfoil ordinates and

the satisfaction of the resulting set of n linear equations at

n points on the airfoil chordline. Comparison with their results

for the thi-kness-induced radial velocity (less the term + L f)I2
on an RAE 101-10% , X = 1/2 ring airfoil is shown in Fig. 4.5.

Excellent agreement is obtained, the results being indistinguishable

except near the trailing edge. Fig. 4.6 compares the induced axial

velocities on an RAE 101-10%, X - 1 ring airfoill again, rela-

tively good agreement is obtained.

U-
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We have found that the computation of the pressure distri-

bution at thirteen chordwise stations takes approximately one I
hour on a desk calculator once f6) and [a) are determined.

The advance tabulation of (0) corresponding to these stations

proves to be of great assistance in facilitating the n=rical

work.



CONCLUSIONS

A simple, rapid method for the determination of the

linearized surface pressure distribution on streamlined ducted

bodies in axial flow has been developed. The pressure coeffi-

cient is composed of camber and thickness terms analogous to

two-dimensional flow plus an additional term expressed as a

matrix operation on the duct sectional properties. Tables of

the necessary matrices for four representative duct chord-to-

diameter ratios are given; matrices obtained by interpolation

from -these values can be used for "in-between" chord-to-diameter

ratios.

The method is ideally suited for engineering calculations

and preliminary design studies and the effects of varying any

o, all of the thickness and camber distributions and chord-to-

diameter ratio may easily be determined.

Comparison of predicted pressure and velocity distributions

for several annular airfoils gives good agreement with previous

experimental and theoretical results. A typical numerical com-

putation for a given configuration may be done on a desk calcu-

lator in about one hour.

The theory may be extended to include the interference

effects of a centerbody and/or a propeller as well as duct angle

of attack.

8o
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APPENDIX

Derivations of certain integrals referred to in the main

portion of the text are given heres

f COB nO ln(l+cosO) dO , n > 1

0

We integrate by parts with u - Jn(l+cosO) and

dv - coo nf dO . Upon carrying this out, we find that the con-

tribution of uv vanishes and we are left with

1 sin4, sin nf l+coes d
0

This is evaluated in turn for each n by expanding sin nO in

powers of sin 0 , removing the factor sin 0 , and dividing

(l+cosO) into sin - (l+coso)(l-cosO) . The integral is then

readily reduced and the results generalized to give

cos nO ln(l+cos@) dO - n+ n>1 (A.1)

0

84
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Gsino In dO
0

We integrate by parts with u - In 1 and

dv - sinO dO . The contribution uv vanishes and, after

trigonometric reduction, v du is simply 2 s so that

f sinO In +s0inO -27r (A.2)

0

7 f o2no sinO Jn 1+8W dO n > 1
So1-sin

We integrate by parts with u- In and

dv - cos 2 no sine do . Then uv vanishes and we are left with

2 P 00 2no d
=n+ Jfd

0

Changing to a period of w/2 , we can integrate this in turn by

means of Formula 858.44 of Ref. 20 to obtain

02n, sino in do 27r 1.35... (2n-) n > 1

0
(A.3)
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4 £n(cosq - coso) 2 dT
0

We integrate by parts with u - in(cos9 - €os)2 and

dv - dq to get

ir ln(l+cos.)2 + 2 a p

0

This integral is somewhat similar in form to the Glauert

integral and can be evaluated by complex contour integration.

Making the substitution z - *iq , we study a related integral

of the form

S (Z-2-1)(Jn z) d
fi L f~' jdz

where C in the closed curve composed of C1 , C2 , C3 ,the

indentations at + , , L, C. , and L2 viz.,

y

_C"
ZL C4 C
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The integrand is analytic inside the region bounded by C and
thus, using the residue theorem3 2 of complex variables, we have

f + ,f+ ,f + +f +f +f -°
C1  -I C2  C3  L1  C4  L2

On 'the identation at + 0 , z - e i +'eeia where G turns

through an angle of - w The contribution here is evaluated

taking the limit as a - 0 At the lower indentation, -,

-ie + , and after passing to the limit e - 0 ,we find

that the contribution here exactly cancels that at + 0 . On

L1 . z - re while on L2 , z = re- . The contributions of

L1 , and L2 are combined and simplified to yield

Li 6, rf+ 2r coso + 1

= 7r An 4 (I+cooo)2 + 2w in 8

on CL . z -6 , v 7e , and, after simplification, we

find that

I - - r In6
c4

Collecting these results, we have

w u 4(1.•.oso)2
f
ClI+C 2 +C 3
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where C + C + C is now the unit circle, so that

COST - Cow i- in 4(.l+coO,) (A).
7'r

and thus, since (P sing/cosT - cos0 is even in Tp

7r

f in(cos,, - cos5o) 2 d- - in .4 (A.5)

0

I7 con nq in(cos, - coso) 2 d9 , n > 1
_ 0

We integrate by parts with u - Jn(cosT - cosO)2 and

dv - cos n4p di uv vanishes and we are left with

i2 f ingg sin nv
nJCOST -CO5-m
0

Replacing sinq sin nq by its equivalent sum of two cosines, we

use the Glauert integral24 or
7r

SCos P9 in p
f COST - COST di .w in• P-

0

and reduce the results toW
f coo n'TIn(cosT - o) 2 d -- reosz* , n 1 (A.6)
0
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f sin vV1 coo qp minv dq
0

We decompose the integrand into the sum of four cosinoes by

Vozmlla 402.05 of Ref. 20, or

,4 sin vv coo q9 sing m [co(q+l-v)V + cos(q+1+v)qv

- cos(q-l+v)qi - cos(q-l-v)4p]

The subsequent integrations are easily carried out, giving

sin v'1 cos q9 slnm dq - Iv- & q- 0

0

-+ • ,V- q+-'. q I 3 (A-7.)

L


